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summary 

The recombination of ground state lead atoms Pb(63P0) is considered 
from the experimental and theoretical viewpoints. Experiments were carried 
out in which the atom was monitored by resonance line absorption at h = 
283.3 nm (Pb(7s(3pp) + SP~(~P,,))) following the pulsed irradiation of lead 
tetraethyl in the presence of COz. A computational analysis of the photo- 
electric pulses was carried out assuming the presence of kinetic components 
in both [Pb] and [Pb] 2. It was found that the high sensitivity of this method 
prevents extraction of the component of the rate involving [Pb] ’ from the 
measured decays. This is seen to be a general limitation on the study of the 
recombination of atoms derived from the pulsed photolysis of a large mole- 
cule. Rate constants for the process Pb + Pb + M + Pbs + M have been calcu- 
lated using the variational phase space theory of Keck for M = He, Ne, Ar, 
Kr, Xe, 02, Nz, COz, CH4, C2Hs, CF4 and SFs. The resulting data are dis- 
cussed within the context of previous studies on the rates of nucleation of 
lead vapours. 

1. Introduction 

The study of the recombination rates of two atoms to form a diatomic 
molecule is an area highly developed from both the experimental [I] and 
theoretical viewpoints [ 2,3]. From the experimental viewpoint, the main 
emphasis has clearly been on the study of the recombination of atoms to 
form stable diatomic molecules such as the molecular halogens, Hs, Oa and 
Na. One reason for this is the clear convenience afforded by the ease of 
establishing a material balance and the determination of absolute atomic 
concentrations from monitoring a molecular property that can be readily 
calibrated, such as a molecular optical extinction coefficient. By obvious 
contrast few, if any, detailed investigations of the kinetics of metal atom 
recombination have been undertaken. Such processes are of interest per se 
and are also of practical concern since the rates of the initial recombination 
of two atoms may govern the overall formation rates of smokes from metal 
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atom vapours. An example of this is the production of particulate lead from 
the shock-tube-initiated thermal decomposition of lead tetramethyl [4] . 

We have described previously [ 5 - 81 a number of kinetic studies in 
which the ground state lead atom Pb(SsPO) has been monitored directly in 
the time resolved mode. In these studies Pb(63P0) was generated photo- 
chemically from low pressures of lead tetraethyl (PbEta) and monitored by 
atomic resonance line absorption. The collisional behaviour of ground state 
lead atoms is of fundamental interest since it constitutes part of an overall 
programme of the kinetic study of group IV atoms (C to Pb) where the role 
of increasing spin-orbit coupling is investigated f9] _ The recombination 
process is of special relevance to the chemical mechanism of the effect of 
added PbEt* (anti-knock) to the internal combustion engine. In this paper 
we describe (a) an attempted experimental investigation to determine atomic 
recombination rates from resonance line absorption and (b) calculations of 
lead atom recombination rates using the phase space theory of Keck [ 10,113 . 
The extraction of the kinetic component, which is second order in atomic 
concentration, in experiments in which transient atoms are generated from 
the pulsed photolysis of relatively large molecules and monitored by reso- 
nance line absorption is a problem of general interest. 

2. Experimental 

A detailed description of the experimental arrangement has been given 
hitherto [7, S] . We restrict our account here to the salient features of the 
apparatus and the procedure for the experimental measurements. Pb(63P0) 
was generated by the pulsed irradiation (E = 250 J, X > 165 nm) of PbEt* in 
the presence of excess COz Ip(COz):p(PbEtd) is approximately 1O’:l) in a 
coaxial lamp and vessel assembly to ensure optimum optical coupling between 
the photolysis source and the reaction cell. The lead atoms were then moni- 
tored by resonance line absorption at X = 283.3 nm (Pb(7s(sE$ c- SP’(~~))), 
gA = 1.8 X lo8 s-l [ 121) using a high intensity hollow cathode source (high 
spectral output Pb lamp, Westinghouse, U.S.A., operating voltage 1100 V, 
current 7 mA). After isolation of the atomic line (Seya-Namioka grating 
monochromator [ 13 - 15 ] ), the photoelectric pulses (EMI photomultiplier 
tube 9783B) representing resonance line absorption were amplified without 
distortion [16] and were transferred to a transient recorder (Data Laborato- 
ries, DL 905) employed in the A/B mode [7, S]. The signals were then 
digitized, stored and transferred onto paper tape (Datadynamics punch 1133) 
in ASCII code for direct input into the University of Cambridge IBM 370 
computer. As described previously [7, S] , the data were subjected to the 
numerical smoothing procedure of Savitsky and Golay [17]. The resonance 
absorption signals were analysed using both the standard Beer-Lambert law 

Itr = 1, exp (-ccl) 

and the modified Beer-Lambert law [ 181 

(I) 



using the previously determined value of 7 = 0.38 * 0.04 [5] for the h = 
283.3 nm transition. 

2. I. Materials 
All materials (PbEt, , COP, CO and Kr (for the photoflash lamp)) were 

prepared as described previously [ 173 . 

3, Experimental investigation 

Previous studies [ 5 - 8 ] of the temporal behaviour of Pb(63P0) by 
resonance line absorption have been carried out in the regime of first order 
kinetics, namely where the decay could be described by the rate equation 

-d ln {Pb(S3P,)} 

dt 
= k’ = K + Xk,[R] 

where R is any reactant gas and, in the absence of added gas, principally 
comprises the parent molecule PbEtl itself. kR is the absolute second order 
rate constant for the reaction of Pb(SsP,) with R. The term K (excluding 
the coefficient k(PbEtd)[PbEtd] ), which includes first order contribution to 
the decay by diffusion, is small and can sensibly be neglected for most 
experimental conditions. Use of the first order kinetic regime enjoys, of 
course, the considerable advantage of avoiding a light absorption calibration 
involving the absolute concentration of Pb(S’P,). The kinetic behaviour 
described by eqn. (III) will arise (a) when collisional relaxation of the opti- 
cally metastable states Pb(6?l?,) (0.969 eV), Pb(63P,) (1.32 eV), Pb(6lDs) 
(2.66 eV) and Pb(GISO) (3.65 eV) [ 191 that are generated in this type of 
experimental system has been completed and (b) when the concentration of 
Pb(e3P,) is sufficiently low for the atomic recombination rate term ka [Pb] ’ 
[M] (M = third body) to be negligibly small in comparison with the term 
C kR [ R ] . The former condition can be satisfied by monitoring the lead atom 
over a time scale by which relaxation to the ground state is sensibly com- 
pleted. This can readily be calculated from the appropriate collisional 
quenching rate constants [20 - 261. The latter condition simply results from 
the use of suitably low pressures of the parent molecule PbEth which are 
none the less commensurate with the production of measurable photochemi- 
cal yields of atoms and from the use of relatively low pulse energies. It only 
requires an approximate curve-of-growth calculation 127 1, restricted to Voigt 
profiles for a single atomic line and a standard three-layer model [28, 291, 
to demonstrate the sensitivity of the resonance line absorption method for 
Pb(6vo). The present single-shot mode arrangement is capable of detecting 
lead atom concentrations of about 101’ atoms cmm3. This sensitivity arises 
in part from the stability of the high spectral output hollow cathode spectro- 
scopic source as opposed to a microwave-powered source which is character- 
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ized by a greater noise level. Hence the degrees of light absorption employed 
in previous measurements on Pb( SsPO) [ 7,8] indicate that the contribution 
to the decay of the lead atom from atomic recombination is negligible. 

Experiments were performed in this investigation to monitor the decay 
of Pb(6?P,) using the kinetic equation 

-d[Pb J 

dt 
= kB [Pb] 2 [M] + k’[Pb] 

CO2 was employed as the third body M on account of its relatively high 
efficiency in other atomic recombination processes [ 11. A low pressure of 
CO @(CO) = 133 N me2) was also employed in order to ensure efficient 
relaxation of Pb(63P,) and Pb(G?P,) [ 201. Under these conditions k’ can be 
approximated to k(PbEt4)[PbEt4]. Clearly, the use of relatively high pres- 
sures of PbEtl to increase [Pb(63P,-,)] on photolysis and hence the magnitude 
of the term in [Pb] 2 will also result in an increase in the magnitude of the 
term k’ [Pb] (eqn. (IV)). The alternative is to employ relatively high pulse 
energies and lower concentrations of the parent molecule than used in the 
earlier experiments [7,8] and to seek curvature in the first order kinetic 
decay traces. 

Figure l(a) gives an example of the digitized form of the computer out- 
put for the transmitted light intensity at X = 283.3 nm, indicating the decay 
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of resonance absorption by Pb(S?P,). Figure l(b) shows a plot derived from 
the data of Fig. l(a) assuming first order kinetic decay. There is clearly 
curvature at shorter times which obviously does not arise from any effects 
of physical relaxation into the ?PO state as the curvature so generated would 
occur in the opposite sense. For simplicity, we shall employ the Beer-Lambert 
law (eqn. (I)) to illustrate the order of magnitude involved in the kinetic 
analysis. (We emphasize that.e in eqn. (I) is the true extinction coefficient as 
opposed to that given in eqn. (II) where it is a floating variable of dimensions 
(cl)-7. It has the empirical meaning of being the slope of the curve of growth 
when given in logarithmic form, i.e. In ln(lo/lt,) versus In c.) The combina- 
tion of eqns. (I) and (IV] yields 

d ln W0lL) = _k, -- 

dt 

The left-hand side of eqn. (V) is the instantaneous value of the slope of the 
plot given in Fig. l(b). As a result of the noise in a digitized plot, it was 
clearly necessary to reconvert the data of Fig. l(b) into analogue form in 
order to obtain the slopes at different points. This was achieved by fitting a 
least squares cubic polynomial to every 20th point in Fig. l(b) using tbe 
NAG library routine EOZACF [30], the fit being accurate to 4% or less. 
Higher degree polynomials were found to be less suitable on account of their 
tendency to oscillate about the experimental curve. The instantaneous value 
of d ln ln(lo/lt,)/dt was then obtained from the computerized derivative of 
the cubic plot. The result, plotted against ln(l&,) (eqn. (V)), is shown in 
Fig. l(c). The initial slope of this plot should yield a linear measure of k3 [M] 
which can be placed on an absolute basis by calculation of E through the 
curve of growth. Sensible estimates of the atomic concentration both from 
the calculated curves of growth and from estimates of atomic yields on 
photolysis indicate that atomic recombination rates derived from the fore- 
going procedure are too rapid (see Section 4) by about four orders of magni- 
tude. The curvature in Fig. l(b) can sensibly be accounted for by rapid 
reaction of the lead atom with the fragments of the photolysis of PbEtd_ 
These results are fully in accord with previous failures [31] to observe Pb2 
in absorption in this type of system. A more complex analysis, in which the 
equivalents of Figs. l(b) and l(c) are constructed either from an empirically 
measured value of y (eqn. (II)) or from a calculated value via the logarithmic 
form of the curve of growth, is not warranted in view of the disparity between 
the results for atomic recombination rates derived from the simple analysis 
presented and sensible values that may be expected. The effect of the high 
sensitivity of the resonance line absorption technique is that the kinetic 
component in [Pb] 2 is only significant compared with the first order decay 
term when the atomic line is effectively saturated. Hence the only convenient 
procedure at present is to calculate the atomic recombination rates from 
theory. 
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4. Calculation of the atomic recombination rate 

The rate of recombination of two Pb(Gv,) atoms in the presence of 
various third bodies M is calculated according to the phase space theory of 
Keck [lo, ll] . It is assumed that the reaction surface is adiabatic and that 
the nuclear motion is described by classical mechanics. Any configuration of 
the three atoms is represented by a point in l&dimensional phase space. The 
recombination rate is calculated. by considering the crossing of a trial surface 
by points which represent separated Pb(6%,) atoms from those that are 
bound in Pbz. The surface is only well defined in the region of phase space 
corresponding to configurations in which interactions are negligible and in 
such regions it must coincide with the surface used to calculate the equilib- 
rium constant for Pbz dissociation. In regions where interactions between 
the three particles are important, the surface is not defined in this manner 
and can be chosen at will. Keck’s theory incorporates a detailed and explicit 
consideration of the X-M (Pb(G”Po)-M) interaction, in contrast with the 
earlier phase space theory of Wigner [32], and also makes allowance for the 
centrifugal barrier in the effective potential operating between the two 
X (Pb(63P0)) atoms. Advantage is taken of the arbitrary nature of the divid- 
ing surface which in Keck’s theory forms the basis of a variational calculation, 
the surface being defined in terms of a single parameter which may be varied 
to give the minimum rate of crossing for the given overall form of the surface. 
Only the broad outline of the necessary mathematical development is given 
here. The full details may be seen in Keck’s original paper [ll] . 

The crossing rate R at which representative points in phase space cross 
a given surface S may be expressed as an integral 

R = j-p(v.n)dS 
S 

v-n > 0 (11 
where p is the density of representative points, v is the generalized velocity 
of a representative point and n is the unit vector normal to the element dS. 
The requirement that van > 0 is, of course, equivalent to taking the rate of 
crossing of S in one direction only. We now suppose that the surface S can 
be defined in terms of the variables pi, ~1 of the phase space together with 
one or more adjustable parameters cyl by an equation of the form 

@@iv 4i9 ai) = 0 (2) 

On this basis, the unit vector n may be written 

V@ 
n=- 

IV9l 
(3) 

and thus 

(4) 
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In general, avalue cannot be assigned to p , the density of points in the region 
of interest. The most convenient procedure is to use instead the maximum 
value Pm attained by p in regions of the phase space where interactions 
between the particles are unimportant, since as a result of Liouville’s theorem 
P<Pm- The effect of employing pm instead of p will result in an upper 
bound to the value of R, namely 

s ds 
R,= P,wm - 

5 lV#l 

The scalar product may be expanded as 

u-n > 0 
from Hamilton’s equations, 

aH f aH 

z=-pi 
- = Gi 
aPi 

where H is the total energy; then 

(5) 

It is evident that the term in parentheses in eqn. (7) is simply 

aH aH 

aPi Qi 

34 w 

api z 

which is, by definition, the Jacobian for the transformation from (H,$) co- 
ordinates to @i, Si) coordinates: a(H,@)/a(pi, qi) = gi. Thus 

J&l = 2 2; jPnl dp-d;@,E, 
i S i i 

where 

(8) 

otherwise $ = 0. 
Equation (8) may be simplified since dS is an element of the surface S 

and de/IV@ I is a vector normal to it. Thus, d&W/IV4 I represents an element 
of volume which in terms of Pi and qi is given by 
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md@ 
-= n dp,dqk 
IV@1 k#i 

where the exclusion from the product of dp,dq, is of course due to the fact 
that dpidq, appears in the denominator of eqn. (8). Thus we have 

Furthermore, for a gas in 

Pm 

where p0 is a constant. 

thermodynamic equilibrium 

(10) 

The remaining development leading to the final expression for the vari- 
ational rate constant has as its starting point eqns. (9) and (10) in conjunction 
with a suitable choice of coordinate system and trial surface. 

Apart from the use of pm for p, there are two other principal reasons 
why R, constitutes an upper bound to the rate. Firstly, the effect of trajec- 
tories which cross S more than once has been overlooked and is likely to be 
particularly important at high temperatures. Secondly, it is possible that 
some parts of the surface S will not be accessible to trajectories which origi- 
nate from regions of the phase space far from the zone where interactions 
are important. 

Before proceeding to the equations which are the end result of the 
mathematical development based on eqns. (9) and (10) it is necessary to 
consider the nature of the trial surface used by Keck [ 111 and to discuss the 
manner in which the three-body potential is treated. Clearly, one cannot 
represent diagramatically a surface in 18dimensional space but one can re- 
present it in the three-dimensional space whose axes are H12, r12, and rs 
where r12 is the distance between X1 and X2 (the two Pb atoms), rs is the 
distance of M from the centre of mass of X1-X2 and HI2 is the internal 
energy of X1-X2. (The original 18 dimensions are, of course, implicit in such 
a representation.) The internal energy of XI-X2 can be written 

H,, = p:2 + z2 l2 
53412 &2G2 

+ Vl2h2) 

where p12 is the linear momentum of X1-X2, p12 is the reduced mass, Z12 is 
the angular momentum and VI2 is the potential energy. The latter two terms 
in HI2 define the effective potential Veft since the term in Zz2 represents the 
presence of a centrifugal barrier. The barrier occurs at r12 = z where 

avet, ( 1 = 0 
ar12 rll =.z 

which at r12 = z yields 
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avl2(52) -if2 = () 

3'12 ( 1 id2 

and, in turn, 

( avl,(r12) ) 

l2 12 
=- 

ar12 z P12Z3 

Hence 

1 avl2(h2) 
V,ff (max)=B= V,,(z)+ -z 

2 ( arr2 ) - z 

i.e. the position and energy of the rotational barrier are defined by z and B. 
Given these parameters, the trial surface in N 12-r12-r8 space can be defined 
in terms of the variational parameter a and there are two faces to the surface: 

face (a) r3 = a, -HI2 < B, r12 4 2 

face (b) r3 > a, N12 = B, r'12 g 2 

This is represented diagrammatically in Fig. 2. 
The decomposition of the trial surface into two distinct faces in this 

way reduces the final result into the sum of two terms corresponding to 
crossings of the faces. The rate at which representative points cross face (a) 
is equivalent to the rate of binary collisions between X1 X2 and M, the vari- 
ational parameter a being regarded as a collision diameter. What is required 
is the rate of such collisions in which there is sufficient energy to dissociate 
X, X2. This component of the solution has been termed the “available energy” 
rate by Keck [ 111. Crossings of face (b) are analogous to the approach of 
Wigner [32] with the added effect of the centrifugal barrier in the effective 

Fig. 2. Schematic two-dimensional representation of the trial surface for the variational 
phase space calculation of atomic recombination rates. 
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potential, the corresponding rate being termed the “barrier rate”, again 
following Keck [ll] . It will be seen that in the present calculations it is the 
latter rate which determines the overall variational rate constant. 

As stated previously, the full details of the procedures leading to the 
final expressions used in the calculations will not be given here but simply 
the equations used together with some brief explanatory comments. The 
equations used are as follows. 

(a) The available energy component kA is given by 

k,(a) = 
4na2&12 

glg2P12 

(cos a- _- cos a+) 

in which a is the variational parameter, g 12, gl and g2 are the electronic 
degeneracies of X1X2, X1 and X2, re is the equilibrium distance in the di- 
atomic molecule, p 12 and Di2 are the parameters in the Morse potential for 
X1 X2, ~3 is the reduced mass of M + X1 X2 and CY- and CY+ are two angles 
which allow for the requirement that M is excluded from regions where 
V total > 0. 

(b) The barrier component kB is given by 

2ng12 
kB(a) = - 

g,g2 
( 2wJ12w4S(~2 

X2 a2(F1 + Fz) exp + a,2 (Fs + F4) 
mph 

where e is the Lennard-Jones well depth for the X-M interaction, a_ and 
a+ are the two values of r13 for which (l/kT) (du/dr) exp (-u/kT) has a 
maximum (u = VPb_-M), z2 is the value of z for which (db/dr) exp (--b) has a 
maxumum (b = B/kT where B has been defined previously) and z1 is the 
value of r12 at which the repulsive portion of V,ff cuts V = B. FI - F4 are 
integrals with respect to z which effectively account for the solid angles over 
which M can induce vibrational and rotational transitions in X1-X2. The 
limits of these integrals are z1 (lower) and z2 (upper). Since the integrands 
are somewhat complex, they will not be reproduced here. Finally, there will 
be a maximum value of 112 above which the rotational barrier ceases to exist; 
the corresponding value of B is then B, in eqn. (12). 

As it is extremely difficult to construct a realistic three-body potential, 
especially in this system, the procedure adopted in this theory is to assume 
separability, so that 

V tot-al * %2h2) + V13@13) + b3hd 

and to use suitable expressions for the two-body potentials. The Pb-Pb 
interaction VI2 ( ri2) is represented by the Morse function 

V(r) = Q2 D -=P E-/312(r---dI'J~ 

with D12 = 9.61 X lo-l3 erg, p12 = 4.56 X lo8 cm-’ and r. = 3.08 A [333. 
For the remaining interactions (Pb-M) two procedure8 are used, one for the 
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inert gases and the other for the diatomic and polyatomic molecules. Firstly, 
when M is an inert gas, van der Waals’ interaction is represented by the 
LennardJones 12-6 potential and the repulsive short range interaction is 
represented by the Mason-Vanderslice potential [ 341. Provided that V/D < 1 
[34], as is the case here, this potential can be written 

V(r) = D exp {- /3r - 2a! exp (-fir/a)} 

Suitable values of D, p and (Y for the inert gases have been given by Mason 
and Vanderslice [ 341. In the cases for which M is a diatomic or polyatomic 
molecule, the Lennard-Jones 12-6 potential is used at all distances to repre- 
sent the Pb-M interaction, employing the standard geometric mean rule. All 
the parameters used [ 33 - 35 ] are listed in Table 1; those for Pb were ob- 
tained by extrapolation of the values for the inert gases on the basis of 
atomic number. 

We stress that the theory is only strictly valid if M is a monatomic 
chaperone_ However, provided that the recombination of Pb atoms proceeds 
largely via a radical complex mechanism (i.e. energy transfer is not impor- 
tant), the rate will depend not so much on the internal complexity of M as 
on the volume of configuration space available to the Pb-M pair as evidenced 
by the strength of their interaction. 

The calculations of kA and kB from eqns. (11) and (12) were performed 
on the University of Cambridge IBM 370 computer using a program which 
was first checked against calculations on the reaction 0 + 0 + Ar [ 111 and 
was found to reproduce the previously reported values satisfactorily. The 
integrals F1 - F4 in the expression for the barrier rate were evaluated using 

TABLE1 

Parameters used in calculations of interatomic potentials 

M Lennard-Jones Mason-Vanderslice 

E (erg) Q(W) D (erg) 
-1 

P(cm 1 a 

He 
Ne 
Ar 
Kr 
XC! 

N2 

02 
co2 
SF6 

CF4 
CH4 
Cd36 
Pb 

1.38 x lo-l6 
4.55 x lo-l6 
1.65 x lo-l4 
2.38 X lO-14 
3.07 x lo-l4 
1.26 x lo-l4 
1.56 x IO-l* 
2.62 x lo-l4 
2.77 x lo-l4 
2.10 x lo-l4 
1.89 x lo-l4 

3.17 x lo-l4 
3.86 x lo-l4 

2.60 5.67 x 10-l' 4.38 x lo8 1.50 
2.79 2.18 x lo+ 4.24 x lo* 1.64 
3.42 2.11x 10-g 3.10 x 108 2.18 
3.60 3.28 X lo-' 2.74 X lo8 2.39 
4.04 3.74 x 1o-g 2.38 x lo8 2.24 
3.68 
3.43 
3.99 
5.51 
4.70 
3.82 
4.42 
4.65 4.83 x 1o-g 1.8 x lo8 2.90 

Morse parametersusedfor Pbs:D=9.61 x lo-la erg,ro = 3.08Aandj3=4.66 x 10' cm-‘. 
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Patterson’s modification of the method of Gaussian quadrature (NAG library 
routine DOlACF) [36] ; otherwise, the computational procedure is lengthy 
but straightforward. Typical results from the program are shown in Figs. 3 
and 4 in which kA and kB am plotted against the function f(a) = {a/(~_ + 2,/Z))* 
where a- has been defined previously and z, is the value of z corresponding 
to the maximum rotational barrier height B,. This device merely serves to 
give some degree of normalization. VaIues of kA and ks were calculated for 
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Fig. 3. Plots of the barrier component kB of tbe variational rate constant us. the function 
f(o) of the variational parameter IY (see text) for the recombination of Pb (#PO) in the 
presence of (a) xenon and (b) CO2 at T = 300 and 1100 K. 
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Fig. 4. Plots of the available energy component kA of the variational rate constant US. the 
function f(a) for the recombination of Pb(g3P,-,) in the presence of (a) xenon at T = 300 K, 
(b) xenon at T = 1100 K and (c) CO2 at T = 300 and 1100 K. 
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various values of f(a) between 0 and 1. Several features of the solutions are 
worthy of note. Firstly, the overall least upper bound k is given in each case 
by the value of kB for a = 0 because kA vanishes at a = 0. Above a certain 
value of a, however, kA rises very steeply indeed. This threshold effect in kA 
is due to the operation of the term (cos CL - cos a,) in eqn. (11); for small 
values of a the sphere on which M lies, and which is centred on the midpoint 
of the internuclear axis X1-X2, is wholly contained in the region for which 
V totd > 0, but as Q increases the sphere expands to admit the region of 
V < 0. Above a certain value of a the sphere is sufficiently large for this 
restriction to be no longer operative, i.e. Vtotd < 0 everywhere on the sphere 
and kA is simply proportional to a2 as evidenced by the linear portion of kA 
uersus f(u) near f(a) = 1. Indeed, this portion would, if projected back to 
a = 0, go through the origin. By contrast, the barrier component has its maxi- 
mum value at a = 0 since the solid angle terms implicit in the integrals 
P, - F4 are largest here but fall off as a increases. In all cases therefore the 
variational rate constant k is equal to kB at a = 0 and the values calculated for 
various M are given in Table 2 for T = 300, 850 and 1100 K. 

It can be seen that several general experimental observations [l] are 
reproduced satisfactorily by Keck’s theory [ 111 : firstly, the reaction rate 
decreases with increasing temperature; secondly, the trend in rate constant 
as M proceeds, for example, from He to Xe cannot be explained simply by 
the effect of the size of M (hence the failure of Wigner’s calculation on this 
point 1321); thirdly, the temperature dependence is strongest for those types 
of M that are most efficient at low temperature. 

Finally, we return to the nucleation of lead. Homer and Prothero 141 
have given a detailed parameterized mathematical model for the nucleation 
process in order to account for their observations following the shock-tube- 
initiated thermal decomposition of tetramethyl lead. Further, a simple 

TABLE 2 

Third order rate constants k3 ( 1O-32 cm6 n~olecule-~ 
s-l) for Pb + Pb + M calculated according to the 
phase space variational method of Keck [ll] 

M 2’ = 300 K T = 850 K T- 11OOK 

He 9.9 8.7 8.5 
Ne 14.4 10.8 10.4 
Ar 27.3 16.2 15.0 
Kr 34.2 18.7 17.3 
Xe 42.6 22.1 19.9 

N2 25.6 16.2 15.1 

02 26.7 16.3 15.0 

co2 38.9 20.9 19.0 

f-4 39.6 22.4 20.6 

SF6 52.8 28.0 25.4 

CH4 31.7 18.4 16.9 
C2Hs 47.0 24.0 21.7 
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mechanistic description from the chemical viewpoint [4] indicated that an 
upper limit for the nucleation rate could be derived from the atomic recom- 
bination rate of lead atoms. In the absence of data for the Pb atoms, the 
recombination rate was estimated from established data for I + I + Ar which 
yielded a nucleation rate a factor of 3 higher than that observed [43. Homer 
and Prothero concluded that the reaction from Pb + Pb + M was probably 
not the rate-determining step. The present work shows that the upper limit 
for the nucleation rate calculated on the basis of atomic recombination is 
higher by at least an order of magnitude. Keck’s theory [ll] certainly 
accounts well for I atom recombination rates in noble gases [ 37 ] . The rates 
for Pb + Pb + M calculated for noble gasses are higher by about a factor of 
35. Hence, Homer and Prothero’s suggestion 143 can be regarded as probably 
being correct and an alternative chemical step must be the rate-determining 
process. 
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